Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy.
نویسندگان
چکیده
Multifunctional cancer therapeutic nanodevices have been designed and synthesized using the poly(amidoamine) (PAMAM) dendrimer as a carrier. Partial acetylation of the generation 5 (G5) PAMAM dendrimer was utilized to neutralize a fraction of the primary amino groups, provide enhanced solubility of the dendrimer during the conjugation reaction of fluorescein isothiocyanate (FITC) (in dimethyl sulfoxide (DMSO)), and prevent nonspecific targeting interactions (in vitro and in vivo) during delivery. The remaining nonacetylated primary amino groups were utilized for conjugation of the functional molecules fluorescein isothiocyanate (FITC, an imaging agent), folic acid (FA, targets overexpressed folate receptors on specific cancer cells), and methotrexate (MTX, chemotherapeutic drug). The appropriate control nanodevices have been synthesized as well. The G5 PAMAM dendrimer molecular weight and number of primary amino groups were determined by gel permeation chromatography (GPC) and potentiometric titration for stoichiometric design of ensuing conjugation reactions. Additionally, dendrimer conjugates were characterized by multiple analytical methods including GPC, nuclear magnetic resonance spectroscopy (NMR), high performance liquid chromatography (HPLC), and UV spectroscopy. The fully characterized nanodevices can be used for the targeted delivery of chemotherapeutic and imaging agents to specific cancer cells. Here, we present a more extensive investigation of our previously reported synthesis of this material with improvements directed toward scale-up synthesis and clinical trials (Pharm. Res. 2002, 19 (9), 1310-1316).
منابع مشابه
Molecular heterogeneity analysis of poly(amidoamine) dendrimer-based mono- and multifunctional nanodevices by capillary electrophoresis.
Poly(amidoamine) (PAMAM) dendrimer-based nanodevices are of recent interest in targeted cancer therapy. Characterization of mono- and multifunctional PAMAM-based nanodevices remains a great challenge because of their molecular complexity. In this work, various mono- and multifunctional nanodevices based on PAMAM G5 (generation 5) dendrimer were characterized by UV-Vis spectrometry, (1)H NMR, si...
متن کاملHyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells.
The current study was aimed to develop a targeted dendrimer formulation of 3, 4-difluorobenzylidene curcumin (CDF) and evaluate its potential in CD44 targeted therapy for pancreatic cancer. Using amine terminated fourth generation poly(amidoamine) (PAMAM) dendrimer nanocarrier and hyaluronic acid (HA) as a targeting ligand, we engineered a CD44-targeted PAMAM dendrimer (HA-PAMAM) formulation of...
متن کاملMultifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy
BACKGROUND We report here a unique approach to using multifunctional dendrimer/combretastatin A4 (CA4) inclusion complexes for targeted cancer therapeutics. METHODS Amine-terminated generation 5 polyamidoamine dendrimers were first partially acetylated to neutralize a significant portion of the terminal amines, and then the remaining dendrimer terminal amines were sequentially modified with f...
متن کاملTargeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles.
We develop a facile approach to fabricating multifunctional dendrimer-stabilized gold nanoparticles (Au DSNPs) for cancer cell targeting and imaging. In this work, amine-terminated generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers pre-functionalized with folic acid (FA) and fluorescein isothiocyanate (FI) are complexed with Au(III) ions, followed by acetylation of the amine groups on the de...
متن کاملEnhanced photodynamic efficacy and efficient delivery of Rose Bengal using nanostructured poly(amidoamine) dendrimers: potential application in photodynamic therapy of cancer
Photodynamic therapy (PDT) is a promising treatment methodology whereby diseased cells and tissues are destroyed by reactive oxygen species (ROS) by using a combination of light and photosensitizers (PS). The medical application of Rose Bengal (RB), photosensitizer with very good ROS generation capability, is limited due to its intrinsic toxicity and insufficient lipophilicity. In this report, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 48 19 شماره
صفحات -
تاریخ انتشار 2005